What’s in Your Audio Library?

Are your digital song files mismatched and overly compressed?
We can help.

BY STEVE WALKER -

PUBLISHED: DECEMBER 22,2021 - UPDATED: MAY 4, 2022

At the time of writing, the author
was assistant chief engineer for

p p U t h O n ™ Radio One Dallas; he subsequently

joined the technical support

department at Wheatstone.

When our station KSOC became
the first in Texas to broadcast in HD Radio, we knew that we needed to be on
top of our audio quality in order to best take advantage of the new technology.
But like many stations we really had no idea where much of our music came

from.

We knew that, although the songs in our playout system were all stored as
uncompressed WAV files, at least some had originated as MP3 files. We wanted
to find a way to identify those songs so that they could be replaced with pristine,

uncompressed audio files.

https://www.radioworld.com/author/steve-walker

It’s important to use the best-quality source material for on-air broadcast, but
especially so when you are broadcasting in HD. The GIGO principle applies:
Garbage In, Garbage Out.

Kirk Harnack, senior solutions consultant at Telos Alliance, had this to say about
broadcasting previously compressed source audio on an HD Radio station:
“Audio that’s been psychoacoustically encoded and decoded is now missing the
‘low-hanging fruit’ that the original encoder identified and eliminated or
modified. If we cascade another psychoacoustic audio encoding algorithm after
the first one, the second encoder will not have the benefit of the natural audio’s

content that was easy to eliminate.”

Soit’s inour interest and that of our listeners to ensure that the audio we
broadcast, which will be processed by the HD Radio encoder, hasn’t already
been subjected to a lossy compression algorithm. With hard drive space as
abundant and affordable as it is today, storage space is no longer a reason to

obtain our music in a compressed format such as MP3.

But short of listening to every song in the library with a critical ear in a studio,
how could we determine which songs had once been psychoacoustically
compressed? All of our songs are now stored as WAV files so just looking at the

file extension or the file size gives no hint whatsoever.

It turns out that there are certain clues visible in the spectrogram of an audio file
that can help identify the formerly compressed songs. The most obvious one is

the cutoff frequency used by the encoder.

When a file is compressed to MP3 format, the algorithm attempts to remove
parts of the audio that the designers of the standard felt wouldn’t be missed by

the human ear in an attempt to reduce file size.

Part of this is the cutoff of all audio content above a certain frequency. That

frequency varies according to the bitrate of the MP3 compression scheme.

From my tests, it seems that a bitrate of 192 kbps results in a cutoff of audio
above about 18 kHz. A rate of 128 kbps cuts off above 16-17 kHz. This is easy

to see when looking at the spectrogram of an MP3 song.

See Fig. 1. Notice that at 17 kHz, the audio levels of this file are already in the

noise floor.

Fig. 1: Spectrogram of “Crystal Ball” by Styx as MP3
Looking at the uncompressed version of the same song in Fig. 2, we don’t get to

the -67 dB level until we reach the 21 kHz frequency range.

Fig. 2: The same song, linear uncompressed.

Put on your SoX

This finding allows us an opportunity to examine our library programatically.
There is acommand-line audio utility called “SoX” (for “sound exchange”) that
we can use along with a scripting language to open files and examine their

frequency content.

| decided to see if | could figure out how to use this utility to check out all our
audio. The hope was that it would identify the songs that may have once been
compressed so that we could examine these more closely and replace them if

necessary.

| ended up with a Python script that loops through a folder with the audio files,
opening each and using SoX to create a temporary file from the song after
applying a high-pass filter at, say, 17 kHz. Then a second process takes the RMS

amplitude value from this temporary file and compares it to a value previously

discovered by experimentation. If below this nominal value, the file is flagged as

a potential candidate for replacement.

These files can be examined manually with a program such as Audacity or Adobe
Audition that offers a spectrogram view. The spectrogram can be examined and
the file can be played in a controlled studio environment so that a determination

can be made as to the need for replacement of the audio.

The line that creates the temporary high-pass-filtered audio file (filtered at 17
kHz) looks like this:

sox [original_filename] [output_file_name] sinc 17k

The code that does rest of the heavy lifting (determining the RMS value of the
high-pass-filtered audio file) is a little scary looking:

sox output.wav -n stat 2>&1 | sed -n 's|*RMS amplitude:[*0-9]*\([0-9.]*\)$|\\1|p'

>>_/rms.txt

All this really does is take a look at the temp file (output.wav) and call up the
stats of the file. Then the sed program searches the resulting statistical output
for the phrase “RMS amplitude” and writes the numerical value of that stat to a
file called rms.txt. The rest of the code, not shown here, inserts the name of the
song or audio file alongside the RMS value of that file. We end up with a list that
looks something like Fig. 3.

SNOOP DOGG |GIN AND JUICE |8.080612
EVE F/GWEN STEFANI |LET ME BLOW YA MIND |&. 004500

SPBRL1G6.wav
SPOB40.wav

|

|
SPAO46.wav | 58 CENTS |P.1.M.P. |8. 000049
SPBO3T.wav | JAZZY JEFF & THE FRESH PRINCE | SUMMERTIME |8.882358
5PBO24.wav | FUGEES IREADY OR NOT |8.801842
Fig. 3

In this case, any song with a value below 0.001 is suspect. Subsequent
inspection of those songs’ spectrograms confirmed that they had a “flat top” at
about 17 kHz, thus we know that, although they are WAV files now, they have
likely been compressed at some point in the past. Those songs should be

replaced with known linear audio.

It should be noted that at high bitrates such as 320 kbps, this method won’t

work as well because the frequency cutoff is close to 20 kHz.

If you'd like the complete Python script, email Radio World and | will send it along:

radioworld@futurenet.com.

